
Similarity and Clustering methods available in

GelJ

Abstract

In this document, we provide a brief explanation of the different meth-
ods available in GelJ to compute similarity among lanes and construct
dendrograms. An explanation about the tolerance value for band match-
ing is also given in this document. Additionally, we include several images
to visually observe the differences among the different methods. In order
to illustrate the different similarity and clustering methods available in
GelJ, we will consider the 5 lanes of Figure I.

Similarity methods

Given a list of n lanes, L, the similarity matrix of L is an n×n matrix where the
element of row i and column j encodes the similarity between the i-th and j-th
lanes of L. There are two approaches to calculate the similarity between lanes:
band-based and curve-based. In the former approach, the similarity between
two lanes is calculated as a coefficient based on the number of matching and
non-matching bands. In the latter approach, the similarity is determined using
a correlation coefficient computed from the projection profiles (also known as
densitometric curves) of the lanes.

Band-based methods

The comparison of lanes using band-based methods is a two-step mechanism:
(1) matching is performed between the bands of two lanes; and (2) the similarity
of two lanes is computed based on the number of matching and non-matching
bands.

In the first step, a tolerance value is introduced. This value indicates the
maximum distance allowed between two bands in order to be considered as a
matching. Under this criterion, two (or more) bands on one lane might be
eligible for matching with the same band on another lane (see Figure II). Two
alternatives are considered to solve this problem: closest band matching or first
band matching. In the former, the two bands that have the shortest distance
are matched; in the latter, the first candidate that is encountered is matched
(see Figure II). The first band matching approach is followed in GelJ.
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Figure I: Lanes (and their bands) used to illustrate the different simi-
larity and clustering methods available in GelJ.

2



Figure II: Matching bands in two lanes. Left. Example of tolerance, or
maximum distance, that is defined to match two bands. Centre. Closest band
matching. Right. First band matching.

Once that the bands of two lanes are matched, the similarity between them
can be computed using different coefficients. The band-based coefficients pro-
vided by GelJ are: Jaccard, Dice, Ochiai, Jeffrey’s X and band difference. The
following notation will be employed to explain these coefficients: given two lanes
Li and Lj , bij is the number of common bands (i.e. matched bands) that appear
in the lanes Li and Lj , bi is the number of bands that appear in Li, and bj is
the number of bands that appear in Lj .

Jaccard coefficient This coefficient divides the number of common bands
(i.e. bands present in both lanes) by the total number of different bands (i.e.
two matching bands are considered as the same band):

bij
bi + bj − bij

.

The Jaccard’s coefficients for the lanes of Figure I are given in the following
matrix. 

Lane1 Lane2 Lane3 Lane4 Lane5

Lane1 1.0 0.72 0.11 0.27 0.35
Lane2 0.72 1.0 0.16 0.39 0.31
Lane3 0.11 0.16 1.0 0.29 0.18
Lane4 0.27 0.39 0.29 1.0 0.44
Lane5 0.35 0.31 0.18 0.44 1.0


Dice coefficient This coefficient is similar to Jaccard coefficient, but more
weight is put on common bands:

2bij
bi + bj

.

The Dice’s coefficients for the lanes of Figure I are given in the following
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matrix. 

Lane1 Lane2 Lane3 Lane4 Lane5

Lane1 1.0 0.84 0.2 0.42 0.51
Lane2 0.84 1.0 0.28 0.56 0.47
Lane3 0.2 0.28 1.0 0.45 0.30
Lane4 0.42 0.56 0.45 1.0 0.61
Lane5 0.51 0.47 0.30 0.61 1.0


Jeffrey’s X As opposed to Jaccard’s and Dice’s coefficient, this coefficient is
sensitive to the proportion of different bands in both lanes (i.e. the similarity
will be higher when the non-matching pattern occur on one pattern than when
they are equally spread over both patterns):

bij
2bi

+
bij
2bj

.

The Jeffrey’s X coefficients for the lanes of Figure I are given in the following
matrix. 

Lane1 Lane2 Lane3 Lane4 Lane5

Lane1 1.0 0.84 0.20 0.42 0.52
Lane2 0.84 1.0 0.28 0.56 0.48
Lane3 0.20 0.28 1.0 0.46 0.31
Lane4 0.42 0.56 0.46 1.0 0.61
Lane5 0.52 0.48 0.31 0.61 1.0


Ochiai As Jeffrey’s X coefficient, this coefficient is also sensitive to the pro-
portion of different bands in both lanes:

bij√
bibj

.

The Ochiai’s coefficients for the lanes of Figure I are given in the following
matrix. 

Lane1 Lane2 Lane3 Lane4 Lane5

Lane1 1.0 0.84 0.20 0.42 0.52
Lane2 0.84 1.0 0.28 0.56 0.47
Lane3 0.20 0.28 1.0 0.45 0.31
Lane4 0.42 0.56 0.45 1.0 0.61
Lane5 0.52 0.47 0.31 0.61 1.0


Band difference This coefficient is computed as the number of non-matched
bands by the total number of bands.

1− ((bi + bj − 2bij)/(bi + bj − bij)).
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The Band difference coefficients for the lanes of Figure I are given in the
following matrix.



Lane1 Lane2 Lane3 Lane4 Lane5

Lane1 1.0 0.72 0.11 0.27 0.35
Lane2 0.72 1.0 0.16 0.39 0.31
Lane3 0.11 0.16 1.0 0.29 0.18
Lane4 0.27 0.39 0.29 1.0 0.44
Lane5 0.35 0.31 0.18 0.44 1.0


Curve-based methods

The curve-based coefficients work with the densitometric curve associated with
the different lanes. The curve-based coefficients implemented in GelJ are: Pear-
son coefficient, Cosine coefficient, Euclidean distance, and Manhattan distance.
The following notation will be employed to explain these coefficients: given two
lanes Li and Lj with height n, their densitometric curves are two arrays of n
values where xi and yi are the ith value of the densitometric curve of Li and
Lj , respectively.

Pearson coefficient This coefficient measures how good is the fit between
two arrays of values based upon a linear regression.∑n

i=1 xiyi − 1
n

∑n
i=1 xi

∑n
i=1 yi√∑n

i=1 x
2
i − 1

n (
∑n

i=1 xi)2
√∑n

i=1 y
2
i − 1

n (
∑n

i=1 yi)
2
.

The Pearson coefficient for the lanes of Figure I are given in the following
matrix. 

Lane1 Lane2 Lane3 Lane4 Lane5

Lane1 1.0 0.99 0.66 0.74 0.8
Lane2 0.99 1.0 0.68 0.75 0.83
Lane3 0.66 0.68 1.0 0.56 0.71
Lane4 0.74 0.75 0.56 1.0 0.77
Lane5 0.8 0.83 0.71 0.77 1.0


Cosine correlation This coefficient measures how good is the fit between two
arrays of values based upon a linear regression that passes through the origin
of the plot. ∑n

i=1 xiyi√∑n
i=1 x

2
i

√∑n
i=1 y

2
i

.

The cosine correlation for the lanes of Figure I are given in the following
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matrix. 

Lane1 Lane2 Lane3 Lane4 Lane5

Lane1 1.0 0.9995 0.95 0.97 0.97
Lane2 0.9995 1.0 0.96 0.97 0.98
Lane3 0.95 0.96 1.0 0.94 0.96
Lane4 0.97 0.97 0.94 1.0 0.97
Lane5 0.97 0.98 0.96 0.97 1.0


Euclidean distance Given two arrays X and Y of length n, X and Y can
be seen as points in an n-dimensional space. The Euclidean distance measures
the length of the line segment connecting X and Y :√√√√ n∑

i=1

(xi − yi)2.

The Euclidean distance for the lanes of Figure I are given in the following
matrix.



Lane1 Lane2 Lane3 Lane4 Lane5

Lane1 0.0 48.31 2893.14 996.36 916.67
Lane2 48.31 0.0 2882.36 987.47 903.14
Lane3 2893.14 2882.36 0.0 2228.67 2185.38
Lane4 996.36 987.47 2228.67 0.0 578.89
Lane5 916.67 903.14 2185.38 578.89 0.0


The similarity matrix created using the Euclidean distance cannot be em-

ployed to generate dendrograms, since clustering algorithms require that the
values of the entries of the input matrix are between 0 and 1, and this property
is not satisfied by the values computed using the Euclidean distance.

Manhattan distance Given two arrays X and Y of length n, X and Y can
be seen as points in an n-dimensional space. The Manhattan distance measures
the sum of the lengths of the projections of the line segment between the points
X and Y onto the coordinate axes:

n∑
i=1

|(xi − yi)|.

The Manhattan distance for the lanes of Figure I are given in the following
matrix.



Lane1 Lane2 Lane3 Lane4 Lane5

Lane1 0.0 740.33 60930.96 18980.94 17998.62
Lane2 740.33 0.0 60736.21 18714.77 17625.29
Lane3 60930.96 60736.21 0.0 45226.1 44813.04
Lane4 18980.94 18714.77 45226.1 0.0 10386.44
Lane5 17998.62 17625.29 44813.04 10386.44 0.0
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Analogously to the Euclidean distance, the similarity matrix created using
the Manhattan distance cannot be employed to generate dendrograms.

Band-based versus curve-based methods

These two kinds of methods have their pros and cons. The advantage of
curve-based coefficients is that they are less subjective than the band-based
coefficients: band-detection and tolerance-fixation (two steps that require user-
intervention) are not required in curve-based methods, but they are necessary
for band-based coefficients. For instance, Lanes 1 and 2 of Figure I are almost
identical and this fact is captured by the Pearson coefficient and the cosine
correlation (the value is almost 1 in both cases); however, since one band was
missing in Lane 2 and that the band selection was not perfectly aligned, the
similarity between these two lanes is lower using band-based coefficients.

On the other hand, the curve-based coefficients never show perfect matches
— perfect matches are possible using the band-based coefficients. The advantage
of band-based coefficients is that they provide a better control of the results
(the bands selected from a lane can be manually modified by the user, but the
densitometric curve cannot be altered).

Clustering methods

The similarity matrices are fed as input to hierarchical clustering algorithms.
These algorithms are employed to visualise the relations among fingerprints us-
ing a dendrogram. The construction of dendograms follows an iterative process:
at each step, the nearest two clusters (sets of fingerprints) are combined into a
higher-level cluster. The difference among the methods relies on how the dis-
tance between the new clusters are recomputed. We will employ the following
notation to explain how the distance is recomputed using the available methods
in GelJ: X and Y are clusters, d(X,Y ) is the similarity between the two clus-
ters, d(x, y) is the similarity between two objects of different clusters, nX is the
number of elements of the cluster X and mX is the centre of cluster X.

UPGMA Using the UPGMA method, the distance is recomputed using the
formula d(X,Y ) = 1

|X||Y |
∑

x∈X
∑

y∈Y d(x, y). The dendrograms that are gen-

erated using this method and employing all the possible similarity measures
available in GelJ are provided in Figure III.

Single linkage Using the single linkage method, the distance is recomputed
using the formula d(X,Y ) = min(d(x, y)) where x ∈ X, y ∈ Y . The den-
drograms that are generated using this method and employing all the possible
similarity measures available in GelJ are provided in Figure IV.
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Figure III: Dendrograms obtained using the different similarity coeffi-
cients available in GelJ and using UPGMA. From top to bottom: Jac-
card, Dice, Jeffrey’s X, Ochiai, Band difference, Pearson coefficient, and cosine
correlation.
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Figure IV: Dendrograms obtained using the different similarity coeffi-
cients available in GelJ and using single linkage. From top to bottom:
Jaccard, Dice, Jeffrey’s X, Ochiai, Band difference, Pearson coefficient, and co-
sine correlation.
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Complete linkage Using the complete linkage method, the distance is re-
computed using the formula d(X,Y ) = max(d(x, y)) where x ∈ X, y ∈ Y .
The dendrograms that are generated using this method and employing all the
possible similarity measures available in GelJ are provided in Figure V.

Mean linkage Using the mean linkage method (also known as group-average
agglomerative clustering), the distance is recomputed using the formula d(X,Y ) =

1
|X+Y ||X+Y−1|

∑
x∈X∪Y

∑
y∈X∪Y,x6=y

d(x, y). The dendrograms that are generated

using this method and employing all the possible similarity measures available
in GelJ are provided in Figure VII.

UPGMC Using the UPGMC method, the distance is recomputed using the
formula d(X,Y ) = ||cX − cY || where cX and cY are the centroids of clusters X
and Y , respectively. The dendrograms that are generated using this method and
employing all the possible similarity measures available in GelJ are provided in
Figure VII.

Ward Using the Ward method, the distance is recomputed using the formula
d(X,Y ) = nXnY

nX+nY
‖mX−mY ‖2. The dendrograms that are generated using this

method and employing all the possible similarity measures available in GelJ are
provided in Figure VIII.

Reproducibility of the results

All the similarity matrices and dendrograms were generated using GelJ. These
results can be reproduced using “Experiment-AdditionalFile4” that is included
in the zip file “AdditionalFile13.zip” provided as a supplementary material of
the paper. This file contains several lanes including the ones employed in this
appendix. Using these lanes, the user can create a comparison and reproduce
the results presented here (the tolerance value for band-matching is 1.0).
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Figure V: Dendrograms obtained using the different similarity coeffi-
cients available in GelJ and using complete linkage. From top to bottom:
Jaccard, Dice, Jeffrey’s X, Ochiai, Band difference, Pearson coefficient, and co-
sine correlation.
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Figure VI: Dendrograms obtained using the different similarity coeffi-
cients available in GelJ and using mean linkage. From top to bottom:
Jaccard, Dice, Jeffrey’s X, Ochiai, Band difference, Pearson coefficient, and co-
sine correlation.
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Figure VII: Dendrograms obtained using the different similarity coeffi-
cients available in GelJ and using UPGMC. From top to bottom: Jaccard,
Dice, Jeffrey’s X, Ochiai, Band difference, Pearson coefficient, and cosine corre-
lation.
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Figure VIII: Dendrograms obtained using the different similarity coef-
ficients available in GelJ and using Ward. From top to bottom: Jaccard,
Dice, Jeffrey’s X, Ochiai, Band difference, Pearson coefficient, and cosine corre-
lation.
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